Computes the explained deviance of a response against a predictor via Generalized Additive Model (GAM). This option is slower than f_rsquared(), but suitable if you will be fitting GAMs with the resulting preference order.
See also
Other preference_order:
auc_score(),
case_weights(),
f_gam_auc_balanced(),
f_gam_auc_unbalanced(),
f_logistic_auc_balanced(),
f_logistic_auc_unbalanced(),
f_rf_auc_balanced(),
f_rf_auc_unbalanced(),
f_rf_rsquared(),
f_rsquared(),
preference_order()
Examples
data(vi)
#subset to limit example run time
vi <- vi[1:1000, ]
#this example requires "mgcv" installed in the system
if(requireNamespace(package = "mgcv", quietly = TRUE)){
f_gam_deviance(
x = "growing_season_length", #predictor
y = "vi_mean", #response
df = vi
)
}
#> [1] 0.8142463