Package index
Automated Multicollinearity Management
Tools to automatically select sets of variables with a low multicollinearity.
-
collinear()
- Automated multicollinearity management
Variance Inflation Factors
Functions implementing VIF-based methods for multicollinearity filtering.
-
vif_df()
- Variance Inflation Factor
-
vif_select()
- Automated Multicollinearity Filtering with Variance Inflation Factors
Pairwise Correlation
Functions implementing pairwise correlation-based methods for multicollinearity filtering.
-
cor_clusters()
- Hierarchical Clustering from a Pairwise Correlation Matrix
-
cor_cramer_v()
- Bias Corrected Cramer's V
-
cor_df()
cor_numeric_vs_numeric()
cor_numeric_vs_categorical()
cor_categorical_vs_categorical()
- Pairwise Correlation Data Frame
-
cor_matrix()
- Pairwise Correlation Matrix
-
cor_select()
- Automated Multicollinearity Filtering with Pairwise Correlations
-
target_encoding_lab()
- Target Encoding Lab: Transform Categorical Variables to Numeric
-
target_encoding_mean()
target_encoding_rank()
target_encoding_loo()
- Target Encoding Methods
-
add_white_noise()
- Add White Noise to Encoded Predictor
-
encoded_predictor_name()
- Name of Target-Encoded Predictor
Preference Order
Rank predictors by their association to a response to preserve important ones during multicollinearity filtering.
-
preference_order()
- Quantitative Variable Prioritization for Multicollinearity Filtering
-
f_auto()
- Select Function to Compute Preference Order
-
f_auto_rules()
- Rules to Select Default f Argument to Compute Preference Order
-
f_functions()
- Data Frame of Preference Functions
-
preference_order_collinear()
- Preference Order Argument in collinear()
-
f_auc_glm_binomial()
f_auc_glm_binomial_poly2()
f_auc_gam_binomial()
f_auc_rpart()
f_auc_rf()
- Association Between a Binomial Response and a Continuous Predictor
-
f_r2_pearson()
f_r2_spearman()
f_r2_glm_gaussian()
f_r2_glm_gaussian_poly2()
f_r2_gam_gaussian()
f_r2_rpart()
f_r2_rf()
- Association Between a Continuous Response and a Continuous Predictor
-
f_r2_glm_poisson()
f_r2_glm_poisson_poly2()
f_r2_gam_poisson()
- Association Between a Count Response and a Continuous Predictor
-
f_v()
- Association Between a Categorical Response and a Categorical Predictor
-
f_v_rf_categorical()
- Association Between a Categorical Response and a Categorical or Numeric Predictor
-
case_weights()
- Case Weights for Unbalanced Binomial or Categorical Responses
-
model_formula()
- Generate Model Formulas
-
performance_score_auc()
- Area Under the Curve of Binomial Observations vs Probabilistic Model Predictions
-
performance_score_r2()
- Pearson's R-squared of Observations vs Predictions
-
performance_score_v()
- Cramer's V of Observations vs Predictions
-
toy
- One response and four predictors with varying levels of multicollinearity
-
vi
- Example Data With Different Response and Predictor Types
-
vi_predictors
- All Predictor Names in Example Data Frame vi
-
vi_predictors_categorical
- All Categorical and Factor Predictor Names in Example Data Frame vi
-
vi_predictors_numeric
- All Numeric Predictor Names in Example Data Frame vi
-
validate_data_cor()
- Validate Data for Correlation Analysis
-
validate_data_vif()
- Validate Data for VIF Analysis
-
validate_df()
- Validate Argument df
-
validate_encoding_arguments()
- Validates Arguments of
target_encoding_lab()
-
validate_predictors()
- Validate Argument predictors
-
validate_preference_order()
- Validate Argument preference_order
-
validate_response()
- Validate Argument response
-
identify_predictors()
- Identify Numeric and Categorical Predictors
-
identify_predictors_categorical()
- Identify Valid Categorical Predictors
-
identify_predictors_numeric()
- Identify Valid Numeric Predictors
-
identify_predictors_type()
- Identify Predictor Types
-
identify_predictors_zero_variance()
- Identify Zero and Near-Zero Variance Predictors
-
identify_response_type()
- Identify Response Type
-
drop_geometry_column()
- Removes geometry column in sf data frames