
Package index
Automated Multicollinearity Management
Tools to automatically select sets of variables with a low multicollinearity.
-
collinear() - Automated multicollinearity management
Variance Inflation Factors
Functions implementing VIF-based methods for multicollinearity filtering.
-
vif_df() - Variance Inflation Factor
-
vif_select() - Automated Multicollinearity Filtering with Variance Inflation Factors
Pairwise Correlation
Functions implementing pairwise correlation-based methods for multicollinearity filtering.
-
cor_clusters() - Hierarchical Clustering from a Pairwise Correlation Matrix
-
cor_cramer_v() - Bias Corrected Cramer's V
-
cor_df()cor_numeric_vs_numeric()cor_numeric_vs_categorical()cor_categorical_vs_categorical() - Pairwise Correlation Data Frame
-
cor_matrix() - Pairwise Correlation Matrix
-
cor_select() - Automated Multicollinearity Filtering with Pairwise Correlations
-
target_encoding_lab() - Target Encoding Lab: Transform Categorical Variables to Numeric
-
target_encoding_mean()target_encoding_rank()target_encoding_loo() - Target Encoding Methods
-
add_white_noise() - Add White Noise to Encoded Predictor
-
encoded_predictor_name() - Name of Target-Encoded Predictor
Preference Order
Rank predictors by their association to a response to preserve important ones during multicollinearity filtering.
-
preference_order() - Quantitative Variable Prioritization for Multicollinearity Filtering
-
f_auto() - Select Function to Compute Preference Order
-
f_auto_rules() - Rules to Select Default f Argument to Compute Preference Order
-
f_functions() - Data Frame of Preference Functions
-
preference_order_collinear() - Preference Order Argument in collinear()
-
f_auc_glm_binomial()f_auc_glm_binomial_poly2()f_auc_gam_binomial()f_auc_rpart()f_auc_rf() - Association Between a Binomial Response and a Continuous Predictor
-
f_r2_pearson()f_r2_spearman()f_r2_glm_gaussian()f_r2_glm_gaussian_poly2()f_r2_gam_gaussian()f_r2_rpart()f_r2_rf() - Association Between a Continuous Response and a Continuous Predictor
-
f_r2_glm_poisson()f_r2_glm_poisson_poly2()f_r2_gam_poisson() - Association Between a Count Response and a Continuous Predictor
-
f_v() - Association Between a Categorical Response and a Categorical Predictor
-
f_v_rf_categorical() - Association Between a Categorical Response and a Categorical or Numeric Predictor
-
case_weights() - Case Weights for Unbalanced Binomial or Categorical Responses
-
model_formula() - Generate Model Formulas
-
performance_score_auc() - Area Under the Curve of Binomial Observations vs Probabilistic Model Predictions
-
performance_score_r2() - Pearson's R-squared of Observations vs Predictions
-
performance_score_v() - Cramer's V of Observations vs Predictions
-
toy - One response and four predictors with varying levels of multicollinearity
-
vi - Example Data With Different Response and Predictor Types
-
vi_predictors - All Predictor Names in Example Data Frame vi
-
vi_predictors_categorical - All Categorical and Factor Predictor Names in Example Data Frame vi
-
vi_predictors_numeric - All Numeric Predictor Names in Example Data Frame vi
-
validate_data_cor() - Validate Data for Correlation Analysis
-
validate_data_vif() - Validate Data for VIF Analysis
-
validate_df() - Validate Argument df
-
validate_encoding_arguments() - Validates Arguments of
target_encoding_lab()
-
validate_predictors() - Validate Argument predictors
-
validate_preference_order() - Validate Argument preference_order
-
validate_response() - Validate Argument response
-
identify_predictors() - Identify Numeric and Categorical Predictors
-
identify_predictors_categorical() - Identify Valid Categorical Predictors
-
identify_predictors_numeric() - Identify Valid Numeric Predictors
-
identify_predictors_type() - Identify Predictor Types
-
identify_predictors_zero_variance() - Identify Zero and Near-Zero Variance Predictors
-
identify_response_type() - Identify Response Type
-
drop_geometry_column() - Removes geometry column in sf data frames