Internal function to assess whether the input arguments df and predictors result in data dimensions suitable for a VIF analysis.
If the number of rows in df is smaller than 10 times the length of predictors, the function either issues a message and restricts predictors to a manageable number, or returns an error.
Usage
validate_data_vif(
df = NULL,
predictors = NULL,
function_name = "collinear::validate_data_vif()",
quiet = FALSE
)Arguments
- df
(required; data frame, tibble, or sf) A data frame with responses and predictors. Default: NULL.
- predictors
(optional; character vector) Names of the predictors to select from
df. If omitted, all numeric columns indfare used instead. If argumentresponseis not provided, non-numeric variables are ignored. Default: NULL- function_name
(optional, character string) Name of the function performing the check. Default: "collinear::validate_data_vif()"
- quiet
(optional; logical) If FALSE, messages generated during the execution of the function are printed to the console Default: FALSE
See also
Other data_validation:
validate_data_cor(),
validate_df(),
validate_encoding_arguments(),
validate_predictors(),
validate_preference_order(),
validate_response()
