Internal function to select a proper f_...() function to compute preference order depending on the types of the response variable and the predictors. The selection criteria is available as a dataframe generated by f_auto_rules().
Arguments
- df
(required; dataframe, tibble, or sf) A dataframe with responses (optional) and predictors. Must have at least 10 rows for pairwise correlation analysis, and
10 * (length(predictors) - 1)for VIF. Default: NULL.- response
(optional, character string) Name of a response variable in
df. Default: NULL.- predictors
(optional; character vector or NULL) Names of the predictors in
df. If NULL, all columns exceptresponsesand constant/near-zero-variance columns are used. Default: NULL.- quiet
(optional; logical) If FALSE, messages are printed. Default: FALSE.
- ...
(optional) Internal args (e.g.
function_nameforvalidate_arg_function_name, a precomputed correlation matrixm, or cross-validation args forpreference_order).
See also
Other preference_order_tools:
f_auto_rules(),
f_functions()
Examples
data(
vi_smol,
vi_predictors_numeric,
vi_predictors_categorical,
vi_predictors
)
f_auto(
df = vi_smol,
response = "vi_numeric",
predictors = vi_predictors_numeric
)
#>
#> collinear::f_auto(): selected function 'f_numeric_glm()' to compute preference order.
#> [1] "f_numeric_glm"
f_auto(
df = vi_smol,
response = "vi_binomial",
predictors = vi_predictors_numeric
)
#>
#> collinear::f_auto(): selected function 'f_binomial_glm()' to compute preference order.
#> [1] "f_binomial_glm"
f_auto(
df = vi_smol,
response = "vi_categorical",
predictors = vi_predictors_categorical
)
#>
#> collinear::f_auto()
#> └── collinear::validate_arg_df(): converted the following character columns to factor:
#> - vi_categorical
#> - koppen_zone
#> - koppen_group
#> - koppen_description
#> - biogeo_ecoregion
#> - biogeo_biome
#> - biogeo_realm
#> - country_name
#> - continent
#> - region
#> - subregion
#>
#> collinear::f_auto(): selected function 'f_categorical_rf()' to compute preference order.
#> [1] "f_categorical_rf"
