Skip to contents

Data Frame of Preference Functions

Usage

f_functions()

Value

data frame

See also

Other preference_order_tools: f_auto(), f_auto_rules(), preference_order_collinear()

Examples

f_functions()
#>                        name  response_type     predictors_types
#> 1              f_r2_pearson        numeric              numeric
#> 2             f_r2_spearman        numeric              numeric
#> 3         f_r2_glm_gaussian        numeric numeric, categorical
#> 4   f_r2_glm_gaussian_poly2        numeric numeric, categorical
#> 5         f_r2_gam_gaussian        numeric numeric, categorical
#> 6                f_r2_rpart        numeric numeric, categorical
#> 7                   f_r2_rf        numeric numeric, categorical
#> 8          f_r2_glm_poisson integer counts numeric, categorical
#> 9    f_r2_glm_poisson_poly2 integer counts numeric, categorical
#> 10         f_r2_gam_poisson integer counts numeric, categorical
#> 11       f_auc_glm_binomial       binomial numeric, categorical
#> 12 f_auc_glm_binomial_poly2       binomial numeric, categorical
#> 13 f_auc_glm_binomial_poly2       binomial numeric, categorical
#> 14       f_auc_gam_binomial       binomial numeric, categorical
#> 15              f_auc_rpart       binomial numeric, categorical
#> 16                 f_auc_rf       binomial numeric, categorical
#> 17                      f_v    categorical          categorical
#> 18       f_v_rf_categorical    categorical numeric, categorical
#>                                                                                                                expression
#> 1                                                                                         cor(x, y, method = 'pearson')^2
#> 2                                                                                        cor(x, y, method = 'spearman')^2
#> 3                                                                        glm(y ~ x, family = gaussian(link = 'identity'))
#> 4                                          glm(y ~ poly(x, degree = 2, raw = TRUE), family = gaussian(link = 'identity'))
#> 5                                                               mgcv::gam(y ~ s(x), family = gaussian(link = 'identity'))
#> 6                                                                                                     rpart::rpart(y ~ x)
#> 7                                                                                                   ranger::ranger(y ~ x)
#> 8                                                                              glm(y ~ x, family = poisson(link = 'log'))
#> 9                                                glm(y ~ poly(x, degree = 2, raw = TRUE), family = poisson(link = 'log'))
#> 10                                                                    mgcv::gam(y ~ s(x), family = poisson(link = 'log'))
#> 11                                          glm(y ~ x, family = quasibinomial(link = 'logit'), weights = case_weights(y))
#> 12 glm(y ~ poly(x, degree = 2, raw = TRUE), family = quasibinomial(link = 'logit'), weights = collinear::case_weights(y))
#> 13 glm(y ~ poly(x, degree = 2, raw = TRUE), family = quasibinomial(link = 'logit'), weights = collinear::case_weights(y))
#> 14                      mgcv::gam(y ~ s(x), family = quasibinomial(link = 'logit'), weights = collinear::case_weights(y))
#> 15                                                              rpart::rpart(y ~ x, weights = collinear::case_weights(y))
#> 16                                                       ranger::ranger(y ~ x, case.weights = collinear::case_weights(y))
#> 17                                                                                              collinear::cramer_v(x, y)
#> 18                                                       ranger::ranger(y ~ x, case.weights = collinear::case_weights(y))
#>    preference_metric
#> 1          r-squared
#> 2   pseudo r-squared
#> 3          r-squared
#> 4          r-squared
#> 5          r-squared
#> 6          r-squared
#> 7          r-squared
#> 8          r-squared
#> 9          r-squared
#> 10         r-squared
#> 11               AUC
#> 12               AUC
#> 13               AUC
#> 14               AUC
#> 15               AUC
#> 16               AUC
#> 17        Cramer's V
#> 18        Cramer's V