Association Between a Binomial Response and a Continuous Predictor
Source:R/preference_order_methods.R
f_auc.Rd
These functions take a data frame with a binomial response "y" with unique values 1 and 0, and a continuous predictor "x", fit a univariate model, to return the Area Under the ROC Curve (AUC) of observations versus predictions:
f_auc_glm_binomial()
: AUC of a binomial response against the predictions of a GLM model with formulay ~ x
, familystats::quasibinomial(link = "logit")
, and weighted cases (seecase_weights()
) to control for unbalanced data.f_auc_glm_binomial_poly2()
: AUC of a binomial response against the predictions of a GLM model with formulay ~ stats::poly(x, degree = 2, raw = TRUE)
, familystats::quasibinomial(link = "logit")
, and weighted cases (seecase_weights()
) to control for unbalanced data.f_auc_gam_binomial()
: AUC of a GAM model with formulay ~ s(x)
, familystats::quasibinomial(link = "logit")
, and weighted cases.f_auc_rpart()
: AUC of a Recursive Partition Tree with weighted cases.f_auc_rf()
: AUC of a Random Forest model with weighted cases.
Usage
f_auc_glm_binomial(df)
f_auc_glm_binomial_poly2(df)
f_auc_gam_binomial(df)
f_auc_rpart(df)
f_auc_rf(df)
See also
Other preference_order_functions:
f_r2
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_r2
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_r2
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_r2
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_r2
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Other preference_order_functions:
f_r2
,
f_r2_counts
,
f_v()
,
f_v_rf_categorical()
Examples
#load example data
data(vi)
#reduce size to speed-up example
vi <- vi[1:1000, ]
#integer counts response and continuous predictor
#to data frame without NAs
df <- data.frame(
y = vi[["vi_binomial"]],
x = vi[["swi_max"]]
) |>
na.omit()
#AUC of GLM with binomial response and weighted cases
f_auc_glm_binomial(df = df)
#> [1] 0.7574154
#AUC of GLM as above plus second degree polynomials
f_auc_glm_binomial_poly2(df = df)
#> [1] 0.8152208
#AUC of binomial GAM with weighted cases
f_auc_gam_binomial(df = df)
#> [1] 0.8185645
#AUC of recursive partition tree with weighted cases
f_auc_rpart(df = df)
#> [1] 0.8093201
#AUC of random forest with weighted cases
f_auc_rf(df = df)
#> [1] 0.892244