Association Between a Categorical Response and a Categorical or Numeric Predictor
Source:R/preference_order_methods.R
f_v_rf_categorical.Rd
Computes the Cramer's V between a categorical response (of class "character" or "factor") and the prediction of a Random Forest model with a categorical or numeric predictor and weighted cases.
See also
Other preference_order_functions:
f_auc
,
f_r2
,
f_r2_counts
,
f_v()
Examples
#load example data
data(vi)
#reduce size to speed-up example
vi <- vi[1:1000, ]
#categorical response and predictor
#to data frame without NAs
df <- data.frame(
y = vi[["vi_factor"]],
x = vi[["soil_type"]]
) |>
na.omit()
#Cramer's V of a Random Forest model
f_v_rf_categorical(df = df)
#> [1] 0.452179
#categorical response and numeric predictor
df <- data.frame(
y = vi[["vi_factor"]],
x = vi[["swi_mean"]]
) |>
na.omit()
f_v_rf_categorical(df = df)
#> [1] 0.577139