
Multicollinearity filtering by variance inflation factor threshold
Source:R/vif_select.R
vif_select.RdWraps collinear_select() to automatize multicollinearity filtering via variance inflation factors (VIF) in dataframes with numeric and categorical predictors.
The argument max_vif determines the maximum variance inflation factor allowed in the resulting selection of predictors.
The argument preference_order accepts a character vector of predictor names ranked from first to last index, or a dataframe resulting from preference_order(). When two predictors in this vector or dataframe are highly collinear, the one with a lower ranking is removed. This option helps protect predictors of interest. If not provided, predictors are ranked from lower to higher multicollinearity.
Please check the sections Variance Inflation Factors and VIF-based Filtering at the end of this help file for further details.
Usage
vif_select(
df = NULL,
response = NULL,
predictors = NULL,
preference_order = NULL,
max_vif = 5,
quiet = FALSE,
...
)Arguments
- df
(required; dataframe, tibble, or sf) A dataframe with responses (optional) and predictors. Must have at least 10 rows for pairwise correlation analysis, and
10 * (length(predictors) - 1)for VIF. Default: NULL.- response
(optional; character or NULL) Name of one response variable in
df. Used to exclude columns whenpredictorsis NULL, and to filterpreference_orderwhen it is a dataframe and contains several responses. Default: NULL.- predictors
(optional; character vector or NULL) Names of the predictors in
df. If NULL, all columns exceptresponsesand constant/near-zero-variance columns are used. Default: NULL.- preference_order
(optional; character vector, dataframe from
preference_order, or NULL) Prioritizes predictors to preserve.- max_vif
(optional, numeric or NULL) Maximum Variance Inflation Factor allowed for
predictorsduring multicollinearity filtering. Recommended values are between 2.5 (strict) and 10 (permissive). Default: 5- quiet
(optional; logical) If FALSE, messages are printed. Default: FALSE.
- ...
(optional) Internal args (e.g.
function_nameforvalidate_arg_function_name, a precomputed correlation matrixm, or cross-validation args forpreference_order).
Variance Inflation Factors
VIF for predictor \(a\) is computed as \(1/(1-R^2)\), where \(R^2\) is the multiple R-squared from regressing \(a\) on the other predictors. Recommended maximums commonly used are 2.5, 5, and 10.
VIF-based Filtering
vif_select ranks numeric predictors (user preference_order
if provided, otherwise from lower to higher VIF) and sequentially adds
predictors whose VIF against the current selection is below max_vif.
References
David A. Belsley, D.A., Kuh, E., Welsch, R.E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons. DOI: 10.1002/0471725153.
See also
Other multicollinearity_filtering:
collinear(),
collinear_select(),
cor_select(),
step_collinear()
Examples
data(vi_smol)
## OPTIONAL: parallelization setup
## irrelevant when all predictors are numeric
## only worth it for large data with many categoricals
# future::plan(
# future::multisession,
# workers = future::availableCores() - 1
# )
## OPTIONAL: progress bar
# progressr::handlers(global = TRUE)
#predictors
predictors = c(
"koppen_zone", #character
"soil_type", #factor
"topo_elevation", #numeric
"soil_temperature_mean" #numeric
)
#predictors ordered from lower to higher multicollinearity
x <- vif_select(
df = vi_smol,
predictors = predictors,
max_vif = 5
)
#>
#> collinear::vif_select()
#> └── collinear::collinear_select()
#> └── collinear::validate_arg_df(): converted the following character columns to factor:
#> - koppen_zone
#>
#> collinear::vif_select()
#> └── collinear::collinear_select()
#> └── collinear::cor_matrix()
#> └── collinear::cor_df(): 2 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
#>
#> collinear::vif_select()
#> └── collinear::collinear_select()
#> └── collinear::validate_arg_preference_order()
#> └── collinear::preference_order(): ranking 4 'predictors' from lower to higher multicollinearity.
#>
#> collinear::vif_select()
#> └── collinear::collinear_select()
#> └── collinear::validate_arg_preference_order()
#> └── collinear::preference_order()
#> └── collinear::cor_matrix()
#> └── collinear::cor_df(): 2 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
#>
#> collinear::vif_select()
#> └── collinear::collinear_select(): maximum VIF is <= 5, multicollinearity filtering is not required.
x
#> [1] "koppen_zone" "soil_type" "topo_elevation"
#> [4] "soil_temperature_mean"
#> attr(,"validated")
#> [1] TRUE
#with custom preference order
x <- vif_select(
df = vi_smol,
predictors = predictors,
preference_order = c(
"koppen_zone",
"soil_type"
),
max_vif = 5
)
#>
#> collinear::vif_select()
#> └── collinear::collinear_select()
#> └── collinear::validate_arg_df(): converted the following character columns to factor:
#> - koppen_zone
#>
#> collinear::vif_select()
#> └── collinear::collinear_select()
#> └── collinear::cor_matrix()
#> └── collinear::cor_df(): 2 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
#>
#> collinear::vif_select()
#> └── collinear::collinear_select()
#> └── collinear::validate_arg_preference_order()
#> └── collinear::preference_order(): ranking 2 'predictors' from lower to higher multicollinearity.
#>
#> collinear::vif_select()
#> └── collinear::collinear_select(): maximum VIF is <= 5, multicollinearity filtering is not required.
x
#> [1] "koppen_zone" "soil_type" "topo_elevation"
#> [4] "soil_temperature_mean"
#> attr(,"validated")
#> [1] TRUE
#with automated preference order
df_preference <- preference_order(
df = vi_smol,
response = "vi_numeric",
predictors = predictors
)
#>
#> collinear::preference_order()
#> └── collinear::validate_arg_df(): converted the following character columns to factor:
#> - koppen_zone
#>
#> collinear::preference_order()
#> └── collinear::f_auto(): selected function 'f_numeric_rf()' to compute preference order.
df_preference
#> response predictor f metric score rank
#> 1 vi_numeric koppen_zone f_numeric_rf R-squared 0.8174 1
#> 2 vi_numeric soil_type f_numeric_rf R-squared 0.6249 2
#> 3 vi_numeric soil_temperature_mean f_numeric_rf R-squared 0.4201 3
#> 4 vi_numeric topo_elevation f_numeric_rf R-squared 0.3754 4
x <- cor_select(
df = vi_smol,
predictors = predictors,
preference_order = df_preference,
max_cor = 0.7
)
#>
#> collinear::cor_select()
#> └── collinear::collinear_select()
#> └── collinear::validate_arg_df(): converted the following character columns to factor:
#> - koppen_zone
#>
#> collinear::cor_select()
#> └── collinear::collinear_select()
#> └── collinear::cor_matrix()
#> └── collinear::cor_df(): 2 categorical predictors have cardinality > 2 and may bias the multicollinearity analysis. Applying target encoding to convert them to numeric will solve this issue.
x
#> [1] "koppen_zone" "soil_type" "topo_elevation"
#> attr(,"validated")
#> [1] TRUE
## OPTIONAL: disable parallelization
#future::plan(future::sequential)