Uses stats::prcomp() to compute the Principal Component Analysis of a time series and return the principal components instead of the original columns. Output columns are named "PC1", "PC2" and so on.
See also
Other tsl_transformation:
f_binary(),
f_chi_squared(),
f_clr(),
f_detrend_difference(),
f_detrend_linear(),
f_hellinger(),
f_list(),
f_log(),
f_percentage(),
f_proportion(),
f_proportion_sqrt(),
f_rescale_global(),
f_rescale_local(),
f_scale_global(),
f_scale_local(),
f_slope(),
f_trend_linear()
Examples
x <- zoo_simulate(cols = 2)
y <- f_pca(
  x = x
)
if(interactive()){
  zoo_plot(x)
  zoo_plot(y)
}
