Gets variable importance scores from rf(), rf_repeat(), and rf_spatial() models.
Arguments
- model
A model fitted with
rf(),rf_repeat(), orrf_spatial(). Default: NULL
Examples
data(plant_richness_df)
data(distance_matrix)
rf.model <- rf(
data = plant_richness_df,
dependent.variable.name = "richness_species_vascular",
predictor.variable.names = colnames(plant_richness_df)[5:21],
distance.matrix = distance_matrix,
distance.thresholds = 0,
n.cores = 1,
verbose = FALSE
)
x <- get_importance(rf.model)
x
#> variable importance
#> 1 human_population 2026.102
#> 2 climate_bio1_average 1831.466
#> 3 climate_hypervolume 1444.210
#> 4 human_population_density 1359.632
#> 5 bias_area_km2 1209.525
#> 6 human_footprint_average 976.333
#> 7 neighbors_count 846.447
#> 8 bias_species_per_record 719.243
#> 9 climate_aridity_index_average 695.705
#> 10 neighbors_area 676.818
#> 11 climate_velocity_lgm_average 631.907
#> 12 neighbors_percent_shared_edge 628.314
#> 13 fragmentation_cohesion 619.986
#> 14 topography_elevation_average 615.590
#> 15 fragmentation_division 483.461
#> 16 climate_bio15_minimum 373.095
#> 17 landcover_herbs_percent_average 358.212