Extracts out-of-bag (OOB) performance metrics from models fitted with rf(), rf_repeat(), or rf_spatial().
Arguments
- model
Model object from
rf(),rf_repeat(), orrf_spatial().
Value
Data frame with performance metrics:
For
rf()andrf_spatial(): columnsmetricandvalueFor
rf_repeat(): columnsmetric,median, andmedian_absolute_deviation(MAD across repetitions)
Details
Out-of-bag (OOB) performance is computed using observations not included in bootstrap samples during model training. Metrics typically include R-squared, pseudo R-squared, RMSE, and normalized RMSE. For repeated models, the median and median absolute deviation summarize performance across repetitions.
See also
rf(), rf_repeat(), rf_spatial(), print_performance()
Other model_info:
get_evaluation(),
get_importance(),
get_importance_local(),
get_moran(),
get_predictions(),
get_residuals(),
get_response_curves(),
get_spatial_predictors(),
print.rf(),
print_evaluation(),
print_importance(),
print_moran(),
print_performance()
Examples
data(plants_rf)
# Extract OOB performance metrics
performance <- get_performance(plants_rf)
performance
#> metric value
#> 1 r.squared.oob 0.5015626
#> 2 r.squared 0.8378728
#> 3 pseudo.r.squared 0.9153539
#> 4 rmse.oob 2379.2537244
#> 5 rmse 1609.6138000
#> 6 nrmse 0.4646691
# For repeated models, median and MAD are returned
# (example would require rf_repeat model)