Skip to contents

Computes a least-cost matrix from a distance matrix. This version differs from cost_path_orthogonal_cpp() in the way it solves ties. In the case of a tie, cost_path_orthogonal_cpp() uses the first neighbor satisfying the minimum distance condition, while this function selects the neighbor that changes the axis of movement within the least-cost matrix. This function is not used anywhere within the package, but was left here for future reference.

Usage

cost_path_slotting_cpp(dist_matrix, cost_matrix)

Arguments

dist_matrix

(required, numeric matrix). Distance matrix between two time series.

cost_matrix

(required, numeric matrix). Least-cost matrix generated from dist_matrix.

Value

data frame

Examples

#simulate two time series
x <- zoo_simulate(seed = 1)
y <- zoo_simulate(seed = 2)

#distance matrix
dist_matrix <- distance_matrix_cpp(
  x = x,
  y = y,
  distance = "euclidean"
)

#least cost matrix
cost_matrix <- cost_matrix_orthogonal_cpp(
  dist_matrix = dist_matrix
)

#least cost path
cost_path <- cost_path_slotting_cpp(
  dist_matrix = dist_matrix,
  cost_matrix = cost_matrix
)

cost_path
#>       x   y      dist       cost
#> 1   100 100 0.6934760 66.9232470
#> 2   100  99 0.7161694 65.5663746
#> 3   100  98 0.6821893 64.8502052
#> 4   100  97 0.6874341 64.1680159
#> 5   100  96 0.6409757 63.4805819
#> 6   100  95 0.6222391 62.8396061
#> 7   100  94 0.5760614 62.2173671
#> 8   100  93 0.5696817 61.6413056
#> 9   100  92 0.5130193 61.0716239
#> 10   99  92 0.5365579 60.5586046
#> 11   98  92 0.4842729 60.0220467
#> 12   97  92 0.5063508 59.5377738
#> 13   96  92 0.5065797 59.0314230
#> 14   95  92 0.5285806 58.5248433
#> 15   94  92 0.5537613 57.9962626
#> 16   93  92 0.5279564 57.4425013
#> 17   92  92 0.5285802 56.9145449
#> 18   91  92 0.5443292 56.3859647
#> 19   90  92 0.4135332 55.8416355
#> 20   89  92 0.5039765 55.4281023
#> 21   88  92 0.5108834 54.9241258
#> 22   87  92 0.5230073 54.4132424
#> 23   86  92 0.5245394 53.8902351
#> 24   85  92 0.5034589 53.3656958
#> 25   84  92 0.5519456 52.8622369
#> 26   83  92 0.5296750 52.3102913
#> 27   82  92 0.5044439 51.7806162
#> 28   81  92 0.4569037 51.2761724
#> 29   80  92 0.4553854 50.8192686
#> 30   79  92 0.5364900 50.3638833
#> 31   78  92 0.4961084 49.8273933
#> 32   77  92 0.4352922 49.3312849
#> 33   76  92 0.4666304 48.8959928
#> 34   75  92 0.4616177 48.4293624
#> 35   74  92 0.3890522 47.9677447
#> 36   74  91 0.3405644 47.5786924
#> 37   74  90 0.3108773 47.2381280
#> 38   74  89 0.2788660 46.9272508
#> 39   74  88 0.2210212 46.6483848
#> 40   74  87 0.2117861 46.4273636
#> 41   73  87 0.1793031 46.2155775
#> 42   72  87 0.1897519 46.0362744
#> 43   71  87 0.1806690 45.8465225
#> 44   70  87 0.1951448 45.6658535
#> 45   70  86 0.1922087 45.4707087
#> 46   70  85 0.2126529 45.2785000
#> 47   70  84 0.2013065 45.0658471
#> 48   69  84 0.2369120 44.8645406
#> 49   68  84 0.2388685 44.6276286
#> 50   67  84 0.2120945 44.3887601
#> 51   66  84 0.1740653 44.1766656
#> 52   65  84 0.1460344 44.0026003
#> 53   64  84 0.1752535 43.8565659
#> 54   63  84 0.1988074 43.6813124
#> 55   62  84 0.1804145 43.4825050
#> 56   61  84 0.1764448 43.3020905
#> 57   60  84 0.1534586 43.1256457
#> 58   59  84 0.1526458 42.9721871
#> 59   58  84 0.1617319 42.8195412
#> 60   57  84 0.1282278 42.6578093
#> 61   56  84 0.2262139 42.5295815
#> 62   55  84 0.1591592 42.3033677
#> 63   54  84 0.1537377 42.1442085
#> 64   53  84 0.1346854 41.9904708
#> 65   52  84 0.1251040 41.8557854
#> 66   52  83 0.1411702 41.7306814
#> 67   51  83 0.1141431 41.5895112
#> 68   51  82 0.1418574 41.4753681
#> 69   50  82 0.1646179 41.3335107
#> 70   49  82 0.1936073 41.1688929
#> 71   48  82 0.1593103 40.9752856
#> 72   47  82 0.1801237 40.8159754
#> 73   46  82 0.1858304 40.6358517
#> 74   45  82 0.2078866 40.4500213
#> 75   44  82 0.2071551 40.2421347
#> 76   43  82 0.1588663 40.0349796
#> 77   43  81 0.1782292 39.8761133
#> 78   43  80 0.1676922 39.6978841
#> 79   43  79 0.1872008 39.5301919
#> 80   43  78 0.1846777 39.3429910
#> 81   43  77 0.1743998 39.1583134
#> 82   43  76 0.1675317 38.9839135
#> 83   43  75 0.2037025 38.8163818
#> 84   43  74 0.2177045 38.6126793
#> 85   43  73 0.2479942 38.3949749
#> 86   43  72 0.2327807 38.1469807
#> 87   42  72 0.2238950 37.9142000
#> 88   41  72 0.2529557 37.6903050
#> 89   40  72 0.2385352 37.4373493
#> 90   39  72 0.2314280 37.1988140
#> 91   39  71 0.2857965 36.9673861
#> 92   39  70 0.2457342 36.6815896
#> 93   38  70 0.2247903 36.4358554
#> 94   37  70 0.1502859 36.2110651
#> 95   37  69 0.1795865 36.0607792
#> 96   37  68 0.1642340 35.8811927
#> 97   37  67 0.1741271 35.7169587
#> 98   37  66 0.1624438 35.5428316
#> 99   37  65 0.1691243 35.3803878
#> 100  36  65 0.1518868 35.2112635
#> 101  36  64 0.1357962 35.0593767
#> 102  36  63 0.1166018 34.9235804
#> 103  36  62 0.1149776 34.8069786
#> 104  36  61 0.1339489 34.6920010
#> 105  35  61 0.1574512 34.5580521
#> 106  34  61 0.2326869 34.4006009
#> 107  33  61 0.2148496 34.1679141
#> 108  32  61 0.3005456 33.9530645
#> 109  31  61 0.2575778 33.6525189
#> 110  31  60 0.2423684 33.3949411
#> 111  30  60 0.2925649 33.1525727
#> 112  29  60 0.2318210 32.8600078
#> 113  29  59 0.2251552 32.6281867
#> 114  29  58 0.2169255 32.4030315
#> 115  29  57 0.1831173 32.1861061
#> 116  29  56 0.2093290 32.0029887
#> 117  29  55 0.2522001 31.7936598
#> 118  29  54 0.2679934 31.5414597
#> 119  29  53 0.2475634 31.2734662
#> 120  29  52 0.2070829 31.0259028
#> 121  29  51 0.2090501 30.8188199
#> 122  29  50 0.1973464 30.6097699
#> 123  28  50 0.1981827 30.4124235
#> 124  28  49 0.2011492 30.2142408
#> 125  28  48 0.2321620 30.0130917
#> 126  28  47 0.2843064 29.7809297
#> 127  28  46 0.2752997 29.4966233
#> 128  28  45 0.2724771 29.2213236
#> 129  28  44 0.2632239 28.9488465
#> 130  28  43 0.2831713 28.6856227
#> 131  28  42 0.3172355 28.4024514
#> 132  28  41 0.3024352 28.0852159
#> 133  28  40 0.3443351 27.7827807
#> 134  28  39 0.2905489 27.4384455
#> 135  28  38 0.3372605 27.1478966
#> 136  28  37 0.3560955 26.8106361
#> 137  28  36 0.3602208 26.4545406
#> 138  28  35 0.3714868 26.0943198
#> 139  28  34 0.3744984 25.7228330
#> 140  28  33 0.4085635 25.3483346
#> 141  28  32 0.3766831 24.9397711
#> 142  28  31 0.3424833 24.5630880
#> 143  28  30 0.3805911 24.2206047
#> 144  28  29 0.3524106 23.8400136
#> 145  28  28 0.3770721 23.4876031
#> 146  28  27 0.3917478 23.1105309
#> 147  28  26 0.4113225 22.7187831
#> 148  28  25 0.4055345 22.3074607
#> 149  28  24 0.4614801 21.9019262
#> 150  28  23 0.4232874 21.4404461
#> 151  28  22 0.3757436 21.0171587
#> 152  28  21 0.3505313 20.6414151
#> 153  28  20 0.3495128 20.2908837
#> 154  28  19 0.3387319 19.9413709
#> 155  28  18 0.3872206 19.6026390
#> 156  28  17 0.3471985 19.2154184
#> 157  28  16 0.3018819 18.8682199
#> 158  28  15 0.3426634 18.5663380
#> 159  28  14 0.3568688 18.2236746
#> 160  28  13 0.3037264 17.8668058
#> 161  28  12 0.3423200 17.5630794
#> 162  28  11 0.3280436 17.2207594
#> 163  28  10 0.3383397 16.8927157
#> 164  27  10 0.3358649 16.5543760
#> 165  26  10 0.3165562 16.2185111
#> 166  25  10 0.3677074 15.9019548
#> 167  24  10 0.3996376 15.5342474
#> 168  23  10 0.4463821 15.1346098
#> 169  22  10 0.4691932 14.6882277
#> 170  21  10 0.4937712 14.2190345
#> 171  20  10 0.5184232 13.7252633
#> 172  19  10 0.5520151 13.2068401
#> 173  18  10 0.5284255 12.6548250
#> 174  17  10 0.5819680 12.1263995
#> 175  16  10 0.4882528 11.5444315
#> 176  15  10 0.5451257 11.0561787
#> 177  14  10 0.5789974 10.5110529
#> 178  13  10 0.5093922  9.9320556
#> 179  12  10 0.4821676  9.4226633
#> 180  11  10 0.4692307  8.9404957
#> 181  10  10 0.4247215  8.4712650
#> 182   9  10 0.4053145  8.0465435
#> 183   8  10 0.3998707  7.6412291
#> 184   7  10 0.3402029  7.2413584
#> 185   7   9 0.3591259  6.9011555
#> 186   6   9 0.3618647  6.5420296
#> 187   5   9 0.3975981  6.1801649
#> 188   4   9 0.3812121  5.7825668
#> 189   3   9 0.3950188  5.4013548
#> 190   3   8 0.4043094  5.0063360
#> 191   3   7 0.4232290  4.6020265
#> 192   3   6 0.4405291  4.1787976
#> 193   3   5 0.4604920  3.7382684
#> 194   3   4 0.4791459  3.2777764
#> 195   3   3 0.5131015  2.7986305
#> 196   3   2 0.4900080  2.2855290
#> 197   3   1 0.5176733  1.7955210
#> 198   2   1 0.6144512  1.2778477
#> 199   1   1 0.6633965  0.6633965