Mapping Time Series Dissimilarity
Source:vignettes/articles/mapping_dissimilarity.Rmd
mapping_dissimilarity.Rmd
#WORK IN PROGRESS
Example Data
The examples below illustrate how to map dissimilarity scores using
the datasets covid_prevalence
and
covid_polygons
included with distantia
. The
dataset comprises time series of weekly Covid-19 prevalence in several
California counties.
tsl <- distantia::tsl_initialize(
x = distantia::covid_prevalence,
name_column = "name",
time_column = "time"
)
tsl_plot(
tsl = tsl[1:10],
columns = 2,
guide = FALSE
)
The map below displays the relevant county polygons using
mapview()
.
mapview::mapview(
distantia::covid_counties,
label = "name"
)
Dissimilarity Analysis
In this section we prepare several datasets to use in the different
mapping examples: a lock-step dissimilarity data frame
(df_psi
), dissimilarity stats per time series
(df_stats
), and a hierarchical clustering based on the
dissimilarity scores (df_cluster
).
#lock-step dissimilarity analysis
df_psi <- distantia::distantia(
tsl = tsl,
lock_step = TRUE
)
#> Loading required package: foreach
#> Loading required package: future
#lock-step dissimilarity stats per time series
df_stats <- distantia::distantia_stats(
df = df_psi
)
#hierarchical clustering of lock-step dissimilarity
df_cluster <- distantia::distantia_cluster_hclust(
df = df_psi
)$df
Dissimilarity Networks
The function distantia_spatial_network()
transforms the
result of distantia()
to an sf data frame with edges
connecting time series locations. The result can be interpreted as a
dissimilarity network.
sf_network <- distantia::distantia_spatial_network(
df = df_psi,
sf = distantia::covid_counties |>
dplyr::select(
name, geometry
)
)
dplyr::glimpse(sf_network)
#> Rows: 630
#> Columns: 6
#> $ edge_name <chr> "Napa - Solano", "Alameda - San_Mateo", "Alameda - Contra_Co…
#> $ y <chr> "Solano", "San_Mateo", "Contra_Costa", "Sonoma", "Stanislaus…
#> $ x <chr> "Napa", "Alameda", "Alameda", "Sacramento", "San_Joaquin", "…
#> $ psi <dbl> 0.8726115, 1.0656371, 1.1620553, 1.2578125, 1.2919255, 1.297…
#> $ geometry <LINESTRING [°]> LINESTRING (-122.3298 38.50..., LINESTRING (-121.…
#> $ length <dbl> 43101.68, 46400.19, 30278.10, 135022.90, 48050.18, 33550.83,…
The sf data frame has a field with the edge name, the columns
x
, y
, and psi
of the distantia
data frame, a linestring geometry column, and the length
column with the edge length.
This sf data frame can be mapped right away, but in this case there are too many pairs of counties to achieve a meaningful map
mapview::mapview(
sf_network,
layer.name = "Psi",
label = "edge_name",
zcol = "psi",
color = distantia::utils_color_continuous_default()
)
The mess above can be solved by focusing on particular aspects of the
data at hand. For example, below we subset sf_network
to
focus on the dissimilarity between San Francisco and its closer
counties.
#subset edges involving San Francisco
#with a maximum length of 250km
sf_network_subset <- sf_network |>
dplyr::filter(
grepl(
pattern = "San_Francisco",
x = edge_name
),
length < 250000
)
#map country polygons and dissimilarity edges
mapview::mapview(
covid_counties,
col.regions = NA,
color = "black",
label = FALSE,
legend = FALSE,
map.type = "OpenStreetMap"
) +
mapview::mapview(
sf_network_subset,
layer.name = "San Francisco - Psi",
label = "edge_name",
zcol = "psi",
lwd = (1/sf_network_subset$psi)*10,
color = distantia::utils_color_continuous_default()
)
Mapping Dissimilarity Stats
Mapping the dissimilarity stats of each time series may help identify places that are somewhat special because they show a high dissimilarity with all others, or places that are average and have no distinctive features.
Merging the dissimilarity stats with the sf data frame containing the county polygons generates the spatial data required for the map.
sf_stats <- merge(
x = distantia::covid_counties,
y = df_stats
)
The map below uses warm colors for places with a high dissimilarity with all others such as Humboldt county in the north west of the state, and cold colors for places with a higher dissimilarity with all others.
mapview::mapview(
sf_stats |>
dplyr::select(
mean,
name
),
layer.name = "Psi mean",
zcol = "mean",
label = "name",
col.regions = distantia::utils_color_continuous_default(),
alpha.regions = 1
)