
Dynamic Time Warping Variable Importance Analysis of Multivariate Time Series Lists
Source:R/momentum_dtw.R
momentum_dtw.Rd
Minimalistic but slightly faster version of momentum()
to compute dynamic time warping importance analysis with the "robust" setup in multivariate time series lists.
Arguments
- tsl
(required, time series list) list of zoo time series. Default: NULL
- distance
(optional, character vector) name or abbreviation of the distance method. Valid values are in the columns "names" and "abbreviation" of the dataset distances. Default: "euclidean".
Value
data frame:
x
: name of the time seriesx
.y
: name of the time seriesy
.psi
: psi score ofx
andy
.variable
: name of the individual variable.importance
: importance score of the variable.effect
: interpretation of the "importance" column, with the values "increases similarity" and "decreases similarity".
See also
Other momentum:
momentum()
,
momentum_ls()
Examples
tsl <- tsl_initialize(
x = distantia::albatross,
name_column = "name",
time_column = "time"
) |>
tsl_transform(
f = f_scale_global
)
df <- momentum_dtw(
tsl = tsl,
distance = "euclidean"
)
#focus on important columns
df[, c(
"x",
"y",
"variable",
"importance",
"effect"
)]
#> x y variable importance effect
#> 1 X132 X134 x 89.721187 decreases similarity
#> 2 X132 X134 y 101.305396 decreases similarity
#> 3 X132 X134 speed -28.286386 increases similarity
#> 4 X132 X134 temperature 78.130508 decreases similarity
#> 5 X132 X134 heading -43.644053 increases similarity
#> 6 X132 X136 x 15.687570 decreases similarity
#> 7 X132 X136 y 82.867368 decreases similarity
#> 8 X132 X136 speed -67.196851 increases similarity
#> 9 X132 X136 temperature 382.039900 decreases similarity
#> 10 X132 X136 heading -104.245839 increases similarity
#> 11 X132 X153 x 467.261463 decreases similarity
#> 12 X132 X153 y 159.727491 decreases similarity
#> 13 X132 X153 speed -44.549191 increases similarity
#> 14 X132 X153 temperature -4.016121 increases similarity
#> 15 X132 X153 heading -88.852346 increases similarity
#> 16 X134 X136 x 36.205194 decreases similarity
#> 17 X134 X136 y 90.757712 decreases similarity
#> 18 X134 X136 speed -61.923595 increases similarity
#> 19 X134 X136 temperature 348.244258 decreases similarity
#> 20 X134 X136 heading -96.737145 increases similarity
#> 21 X134 X153 x 761.132445 decreases similarity
#> 22 X134 X153 y 26.329542 decreases similarity
#> 23 X134 X153 speed -62.801312 increases similarity
#> 24 X134 X153 temperature -23.264433 increases similarity
#> 25 X134 X153 heading -76.874072 increases similarity
#> 26 X136 X153 x 530.402462 decreases similarity
#> 27 X136 X153 y 24.217594 decreases similarity
#> 28 X136 X153 speed -67.659029 increases similarity
#> 29 X136 X153 temperature 255.711643 decreases similarity
#> 30 X136 X153 heading -119.877355 increases similarity