Given an sf data frame with geometry types POLYGON, MULTIPOLYGON, or POINT representing time series locations, this function transforms the output of momentum()
, momentum_ls()
, momentum_dtw()
to an sf data frame.
If network = TRUE
, the sf data frame is of type LINESTRING, with edges connecting time series locations. This output is helpful to build many-to-many dissimilarity maps (see examples).
If network = FALSE
, the sf data frame contains the geometry in the input sf
argument. This output helps build one-to-many dissimilarity maps.
Arguments
- df
(required, data frame) Output of
momentum()
,momentum_ls()
, ormomentum_dtw()
. Default: NULL- sf
(required, sf data frame) Points or polygons representing the location of the time series in argument 'df'. It must have a column with all time series names in
df$x
anddf$y
. Default: NULL- network
(optional, logical) If TRUE, the resulting sf data frame is of time LINESTRING and represent network edges. Default: TRUE
See also
Other momentum_support:
momentum_aggregate()
,
momentum_boxplot()
,
momentum_model_frame()
,
momentum_stats()
,
momentum_to_wide()
Examples
tsl <- distantia::tsl_initialize(
x = distantia::eemian_pollen,
name_column = "name",
time_column = "time"
)
#> Warning: distantia::utils_prepare_time(): duplicated time indices in 'Krumbach_I':
#> - value 6.8 replaced with 6.825
df_momentum <- distantia::momentum(
tsl = tsl
)
#network many to many
sf_momentum <- distantia::momentum_spatial(
df = df_momentum,
sf = distantia::eemian_coordinates,
network = TRUE
)
#network map
# mapview::mapview(
# sf_momentum,
# layer.name = "Importance - Abies",
# label = "edge_name",
# zcol = "importance__Abies",
# lwd = 3
# ) |>
# suppressWarnings()
#one to many
sf_momentum <- distantia::momentum_spatial(
df = df_momentum,
sf = distantia::eemian_coordinates,
network = FALSE
)
#subset one county
sf_momentum_subset <- sf_momentum[sf_momentum$x == "Jammertal", ]
#one to many map
#variable inducing most similarity with Jammertal
# mapview::mapview(
# sf_momentum_subset,
# layer.name = "Importance - Abies",
# label = "y",
# zcol = "most_similarity",
# alpha.regions = 1
# ) |>
# suppressWarnings()