Data Transformation: Polynomial Linear Trend of Zoo Time Series
Source:R/transformations.R
f_trend_poly.Rd
Fits a polynomial linear model on each column of a zoo object using time as a predictor, and predicts the outcome to return the polynomial trend of the time series. This method is a useful alternative to f_trend_linear when the overall. trend of the time series does not follow a straight line.
Arguments
- x
(required, zoo object) Zoo time series object to transform.
- degree
(optional, integer) Degree of the polynomial. Default: 2
- center
(required, logical) If TRUE, the output is centered at zero. If FALSE, it is centered at the data mean. Default: TRUE
- ...
(optional, additional arguments) Ignored in this function.
See also
Other tsl_transformation:
f_binary()
,
f_clr()
,
f_detrend_difference()
,
f_detrend_linear()
,
f_detrend_poly()
,
f_hellinger()
,
f_list()
,
f_log()
,
f_percent()
,
f_proportion()
,
f_proportion_sqrt()
,
f_rescale_global()
,
f_rescale_local()
,
f_scale_global()
,
f_scale_local()
,
f_trend_linear()
Examples
x <- zoo_simulate(cols = 2)
y <- f_trend_poly(
x = x
)
if(interactive()){
zoo_plot(x)
zoo_plot(y)
}