
Exponential Smoothing of Zoo Time Series
Source:R/zoo_smooth_exponential.R
zoo_smooth_exponential.RdApplies exponential smoothing to a zoo time series object, where each value is a weighted average of the current value and past smoothed values. This method is useful for reducing noise in time series data while preserving the general trend.
Arguments
- x
(required, zoo object) time series to smooth Default: NULL
- alpha
(required, numeric) Smoothing factor in the range (0, 1]. Determines the weight of the current value relative to past values. A higher value gives more weight to recent observations, while a lower value gives more weight to past observations. Default: 0.2
See also
Other zoo_functions:
zoo_aggregate(),
zoo_name_clean(),
zoo_name_get(),
zoo_name_set(),
zoo_permute(),
zoo_plot(),
zoo_resample(),
zoo_smooth_window(),
zoo_time(),
zoo_to_tsl(),
zoo_vector_to_matrix()
Examples
x <- zoo_simulate()
x_smooth <- zoo_smooth_exponential(
x = x,
alpha = 0.2
)
if(interactive()){
zoo_plot(x)
zoo_plot(x_smooth)
}