Computes the the minimum, mean, maximum, and quantiles 0.05, 0.25, median (0.5), 0.75, and 0.95 on the absolute values of the column "correlation" in the output of cor_df().
Arguments
- df
(required; dataframe, tibble, or sf) A dataframe with predictors or the output of
cor_df(). Default: NULL.- predictors
(optional; character vector or NULL) Names of the predictors in
df. If NULL, all columns exceptresponsesand constant/near-zero-variance columns are used. Default: NULL.- quiet
(optional; logical) If FALSE, messages are printed. Default: FALSE.
- ...
(optional) Internal args (e.g.
function_nameforvalidate_arg_function_name, a precomputed correlation matrixm, or cross-validation args forpreference_order).
See also
Other multicollinearity_assessment:
collinear_stats(),
cor_clusters(),
cor_cramer(),
cor_df(),
cor_matrix(),
vif(),
vif_df(),
vif_stats()
Examples
data(
vi_smol,
vi_predictors_numeric
)
## OPTIONAL: parallelization setup
## irrelevant when all predictors are numeric
## only worth it for large data with many categoricals
# future::plan(
# future::multisession,
# workers = future::availableCores() - 1
# )
## OPTIONAL: progress bar
# progressr::handlers(global = TRUE)
x <- cor_stats(
df = vi_smol,
predictors = vi_predictors_numeric
)
x
#> method statistic value
#> 1 correlation n 1081.0000
#> 2 correlation minimum 0.0011
#> 3 correlation quantile_0.05 0.0426
#> 4 correlation quantile_0.25 0.1817
#> 5 correlation mean 0.3980
#> 6 correlation median 0.3610
#> 7 correlation quantile_0.75 0.6184
#> 8 correlation quantile_0.95 0.8264
#> 9 correlation maximum 0.9893
## OPTIONAL: disable parallelization
#future::plan(future::sequential)
