Computes the the minimum, mean, maximum, and quantiles 0.05, 0.25, median (0.5), 0.75, and 0.95 of the column "vif" in the output of vif_df().
Arguments
- df
(required; dataframe, tibble, or sf) A dataframe with responses (optional) and predictors. Must have at least 10 rows for pairwise correlation analysis, and
10 * (length(predictors) - 1)for VIF. Default: NULL.- predictors
(optional; character vector or NULL) Names of the predictors in
df. If NULL, all columns exceptresponsesand constant/near-zero-variance columns are used. Default: NULL.- quiet
(optional; logical) If FALSE, messages are printed. Default: FALSE.
- ...
(optional) Internal args (e.g.
function_nameforvalidate_arg_function_name, a precomputed correlation matrixm, or cross-validation args forpreference_order).
Value
dataframe with columns method with the value "vif", statistic with the statistic name, and value.
See also
Other multicollinearity_assessment:
collinear_stats(),
cor_clusters(),
cor_cramer(),
cor_df(),
cor_matrix(),
cor_stats(),
vif(),
vif_df()
Examples
data(
vi_smol,
vi_predictors_numeric
)
# ## OPTIONAL: parallelization setup
# ## irrelevant when all predictors are numeric
# ## only worth it for large data with many categoricals
# future::plan(
# future::multisession,
# workers = future::availableCores() - 1
# )
# ## OPTIONAL: progress bar
# progressr::handlers(global = TRUE)
x <- vif_stats(
df = vi_smol,
predictors = vi_predictors_numeric
)
x
#> method statistic value
#> 1 vif n 47.0000
#> 2 vif minimum 1.8158
#> 3 vif quantile_0.05 3.7499
#> 4 vif quantile_0.25 58.1814
#> 5 vif mean 214.5167
#> 6 vif median 170.1444
#> 7 vif quantile_0.75 354.2920
#> 8 vif quantile_0.95 520.9411
#> 9 vif maximum 553.2944
## OPTIONAL: disable parallelization
#future::plan(future::sequential)
