Converts Inf, -Inf, and NaN to NA (via tsl_Inf_to_NA()
and tsl_NaN_to_NA()
), and counts the total number of NA cases in each time series.
See also
Other tsl_management:
tsl_colnames_clean()
,
tsl_colnames_get()
,
tsl_colnames_set()
,
tsl_diagnose()
,
tsl_handle_NA()
,
tsl_names_clean()
,
tsl_names_get()
,
tsl_names_set()
,
tsl_names_test()
,
tsl_ncol()
,
tsl_nrow()
,
tsl_repair()
,
tsl_split()
,
tsl_subset()
,
tsl_time()
,
tsl_time_class_set()
,
tsl_to_df()
Examples
#tsl with no NA cases
tsl <- tsl_simulate()
tsl_count_NA(tsl = tsl)
#> $A
#> [1] 0
#>
#> $B
#> [1] 0
#>
#tsl with NA cases
tsl <- tsl_simulate(
na_fraction = 0.3
)
tsl_count_NA(tsl = tsl)
#> distantia::tsl_count_NA(): NA cases in 'tsl':
#> name NA_cases
#> 1 A 150
#> 2 B 150
#> Please impute, replace, or remove them with tsl_handle_NA().FALSE
#> $A
#> [1] 150
#>
#> $B
#> [1] 150
#>
#tsl with variety of empty cases
tsl <- tsl_simulate()
tsl[[1]][1, 1] <- Inf
tsl[[1]][2, 1] <- -Inf
tsl[[1]][3, 1] <- NaN
tsl[[1]][4, 1] <- NaN
tsl_count_NA(tsl = tsl)
#> distantia::tsl_count_NA(): NA cases in 'tsl':
#> name NA_cases
#> 1 A 4
#> 2 B 0
#> Please impute, replace, or remove them with tsl_handle_NA().FALSE
#> $A
#> [1] 4
#>
#> $B
#> [1] 0
#>