The functions tsl_time() and tsl_time_summary() summarize the time features of a time series list.
tsl_time()returns a data frame with one row per time series in the argument 'tsl'tsl_time_summary()returns a list with the features captured bytsl_time(), but aggregated across time series.
Both functions return keywords useful for the functions tsl_aggregate() and tsl_resample(), depending on the value of the argument keywords.
Arguments
- tsl
(required, list) Time series list. Default: NULL
- keywords
(optional, character string or vector) Defines what keywords are returned. If "aggregate", returns valid keywords for
zoo_aggregate(). If "resample", returns valid keywords forzoo_resample(). If both, returns all valid keywords. Default: c("aggregate", "resample").
Value
tsl_time(): data frame with the following columns:name(string): time series name.rows(integer): number of observations.class(string): time class, one of "Date", "POSIXct", or "numeric."units(string): units of the time series.length(numeric): total length of the time series expressed inunits.resolution(numeric): average interval between observations expressed inunits.begin(date or numeric): begin time of the time series.end(date or numeric): end time of the time series.keywords(character vector): valid keywords fortsl_aggregate()ortsl_resample(), depending on the value of the argumentkeywords.
tsl_time_summary(): list with the following objects:class(string): time class, one of "Date", "POSIXct", or "numeric."units(string): units of the time series.begin(date or numeric): begin time of the time series.end(date or numeric): end time of the time series.resolution_max(numeric): longer time interval between consecutive samples expressed inunits.resolution_min(numeric): shorter time interval between consecutive samples expressed inunits.keywords(character vector): valid keywords fortsl_aggregate()ortsl_resample(), depending on the value of the argumentkeywords.units_df(data frame) data frame for internal use withintsl_aggregate()andtsl_resample().
See also
Other tsl_management:
tsl_burst(),
tsl_colnames_clean(),
tsl_colnames_get(),
tsl_colnames_prefix(),
tsl_colnames_set(),
tsl_colnames_suffix(),
tsl_count_NA(),
tsl_diagnose(),
tsl_handle_NA(),
tsl_join(),
tsl_names_clean(),
tsl_names_get(),
tsl_names_set(),
tsl_names_test(),
tsl_ncol(),
tsl_nrow(),
tsl_repair(),
tsl_subset(),
tsl_to_df()
Examples
#simulate a time series list
tsl <- tsl_simulate(
n = 3,
rows = 150,
time_range = c(
Sys.Date() - 365,
Sys.Date()
),
irregular = TRUE
)
#time data frame
tsl_time(
tsl = tsl
)
#> name rows class units length resolution begin end keywords
#> 1 A 128 Date days 364.2857 2.868391 2024-09-30 2025-09-30 years, q....
#> 2 B 114 Date days 359.3846 3.180395 2024-10-05 2025-09-30 quarters....
#> 3 C 123 Date days 364.2566 2.985710 2024-09-30 2025-09-29 years, q....
#time summary
tsl_time_summary(
tsl = tsl
)
#> $class
#> [1] "Date"
#>
#> $units
#> [1] "days"
#>
#> $begin
#> [1] "2024-09-30"
#>
#> $end
#> [1] "2025-09-30"
#>
#> $resolution_max
#> [1] 0.7142857
#>
#> $resolution_min
#> [1] 14.43956
#>
#> $keywords
#> [1] "years" "quarters" "months" "weeks" "days"
#>
#> $units_df
#> factor base_units units threshold keyword
#> 4 NA days years 365 TRUE
#> 5 NA days quarters 90 TRUE
#> 6 NA days months 30 TRUE
#> 7 NA days weeks 7 TRUE
#> 8 NA days days 1 TRUE
#>
