Extracts Moran's I test results for spatial autocorrelation in model residuals from models fitted with rf(), rf_repeat(), or rf_spatial().
Arguments
- model
Model object from
rf(),rf_repeat(), orrf_spatial().
Value
Data frame with Moran's I statistics at multiple distance thresholds. Columns include distance.threshold, moran.i (statistic), p.value, interpretation, and method.
Details
Moran's I tests for spatial autocorrelation in model residuals. Significant positive values indicate residuals are spatially clustered, suggesting the model hasn't fully captured spatial patterns. For spatial models (rf_spatial()), low or non-significant Moran's I values indicate successful removal of spatial autocorrelation.
See also
moran(), moran_multithreshold(), plot_moran(), print_moran()
Other model_info:
get_evaluation(),
get_importance(),
get_importance_local(),
get_performance(),
get_predictions(),
get_residuals(),
get_response_curves(),
get_spatial_predictors(),
print.rf(),
print_evaluation(),
print_importance(),
print_moran(),
print_performance()
Examples
data(plants_rf)
# Extract Moran's I test results
moran_results <- get_moran(plants_rf)
moran_results
#> distance.threshold moran.i moran.i.null p.value
#> 1 100 0.163544964 -0.004424779 6.854407e-08
#> 2 1000 0.072542848 -0.004424779 5.285324e-07
#> 3 2000 0.026479300 -0.004424779 2.115511e-03
#> 4 4000 0.007600359 -0.004424779 3.166076e-02
#> interpretation
#> 1 Positive spatial correlation
#> 2 Positive spatial correlation
#> 3 Positive spatial correlation
#> 4 Positive spatial correlation
# Check for significant spatial autocorrelation
significant <- moran_results[moran_results$p.value < 0.05, ]
significant
#> distance.threshold moran.i moran.i.null p.value
#> 1 100 0.163544964 -0.004424779 6.854407e-08
#> 2 1000 0.072542848 -0.004424779 5.285324e-07
#> 3 2000 0.026479300 -0.004424779 2.115511e-03
#> 4 4000 0.007600359 -0.004424779 3.166076e-02
#> interpretation
#> 1 Positive spatial correlation
#> 2 Positive spatial correlation
#> 3 Positive spatial correlation
#> 4 Positive spatial correlation