
Area Under the Curve of Binomial GLM predictions vs. observations
Source:R/f_binomial_glm.R
f_binomial_glm.RdFits a Quasibinomial GLM model y ~ x with the binomial response y (values 0 and 1) and the numeric, character, or factor predictor x using stats::glm() and returns the area under the ROC curve of the observations against the predictions (see score_auc()).
Cases are weighted with case_weights() to prevent issues arising from class imbalance.
Supports cross-validation via the arguments arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and n) introduced via ellipsis (...). See preference_order() for further details.
See also
Other preference_order_functions:
f_binomial_gam(),
f_binomial_rf(),
f_categorical_rf(),
f_count_gam(),
f_count_glm(),
f_count_rf(),
f_numeric_gam(),
f_numeric_glm(),
f_numeric_rf(),
preference_order()
Examples
data(vi_smol)
df <- data.frame(
y = vi_smol[["vi_binomial"]],
x = vi_smol[["swi_max"]]
)
#no cross-validation
f_binomial_glm(df = df)
#> [1] 0.7161608
#cross-validation
f_binomial_glm(
df = df,
cv_training_fraction = 0.5,
cv_iterations = 10
)
#> [1] 0.7342075 0.7601301 0.7172146 0.7097408 0.7183745 0.7152365 0.6981429
#> [8] 0.7284071 0.7129516 0.6773125
#categorical predictor
df <- data.frame(
y = vi_smol[["vi_binomial"]],
x = vi_smol[["koppen_zone"]]
)
f_binomial_glm(df = df)
#> [1] 0.9334159