Fits a Gaussian GLM model y ~ x with the numeric response y and the numeric, character, or factor predictor x using stats::glm() and returns the R-squared of the observations against the predictions (see score_r2()).
Supports cross-validation via the arguments arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and n) introduced via ellipsis (...). See preference_order() for further details.
See also
Other preference_order_functions:
f_binomial_gam(),
f_binomial_glm(),
f_binomial_rf(),
f_categorical_rf(),
f_count_gam(),
f_count_glm(),
f_count_rf(),
f_numeric_gam(),
f_numeric_rf(),
preference_order()
Examples
data(vi_smol)
df <- data.frame(
y = vi_smol[["vi_numeric"]],
x = vi_smol[["swi_max"]]
)
#no cross-validation
f_numeric_glm(df = df)
#> [1] 0.5549257
#cross-validation
f_numeric_glm(
df = df,
cv_training_fraction = 0.5,
cv_iterations = 10
)
#> [1] 0.5515153 0.5383230 0.5456173 0.5165563 0.5317755 0.5118719 0.5540816
#> [8] 0.5672098 0.5911266 0.5604046
#categorical predictor
df <- data.frame(
y = vi_smol[["vi_numeric"]],
x = vi_smol[["koppen_zone"]]
)
f_numeric_glm(df = df)
#> [1] 0.8194987
