Skip to contents

Fits a Gaussian GLM model y ~ x with the numeric response y and the numeric, character, or factor predictor x using stats::glm() and returns the R-squared of the observations against the predictions (see score_r2()).

Supports cross-validation via the arguments arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and n) introduced via ellipsis (...). See preference_order() for further details.

Usage

f_numeric_glm(df, ...)

Arguments

df

(required, dataframe) with columns:

  • x: (numeric, character, factor) predictor.

  • y (numeric) continuous response.

...

(optional) Accepts the arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and Inf) for cross validation.

Value

numeric or numeric vector: R-squared

Examples


data(vi_smol)

df <- data.frame(
  y = vi_smol[["vi_numeric"]],
  x = vi_smol[["swi_max"]]
)

#no cross-validation
f_numeric_glm(df = df)
#> [1] 0.5549257

#cross-validation
f_numeric_glm(
  df = df,
  cv_training_fraction = 0.5,
  cv_iterations = 10
  )
#>  [1] 0.5515153 0.5383230 0.5456173 0.5165563 0.5317755 0.5118719 0.5540816
#>  [8] 0.5672098 0.5911266 0.5604046

#categorical predictor
df <- data.frame(
  y = vi_smol[["vi_numeric"]],
  x = vi_smol[["koppen_zone"]]
)

f_numeric_glm(df = df)
#> [1] 0.8194987