Fits a Poisson GLM model y ~ x with the numeric response y and the numeric predictor x using stats::glm() and returns the R-squared of the observations against the predictions (see score_r2()).
Supports cross-validation via the arguments arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and n) introduced via ellipsis (...). See preference_order() for further details.
See also
Other preference_order_functions:
f_binomial_gam(),
f_binomial_glm(),
f_binomial_rf(),
f_categorical_rf(),
f_count_gam(),
f_count_rf(),
f_numeric_gam(),
f_numeric_glm(),
f_numeric_rf(),
preference_order()
Examples
data(vi_smol)
df <- data.frame(
y = vi_smol[["vi_counts"]],
x = vi_smol[["swi_max"]]
)
#no cross-validation
f_count_glm(df = df)
#> [1] 0.4894793
#cross-validation
f_count_glm(
df = df,
cv_training_fraction = 0.5,
cv_iterations = 10
)
#> [1] 0.4866785 0.4815285 0.5095271 0.4650074 0.5030237 0.5071137 0.4820454
#> [8] 0.5300281 0.4972431 0.4897542
#categorical predictor
df <- data.frame(
y = vi_smol[["vi_counts"]],
x = vi_smol[["koppen_zone"]]
)
f_count_glm(df = df)
#> [1] 0.8194987
