Skip to contents

Fits a Gaussian GAM model y ~ s(x) (y ~ x if x is non-numeric) with the numeric response y and the numeric, character or factor predictor x using mgcv::gam() and returns the R-squared of the observations against the predictions (see score_r2()).

Supports cross-validation via the arguments arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and n) introduced via ellipsis (...). See preference_order() for further details.

Usage

f_numeric_gam(df, ...)

Arguments

df

(required, dataframe) with columns:

  • x: (numeric, character, factor) predictor.

  • y (numeric) continuous response.

...

(optional) Accepts the arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and Inf) for cross validation.

Value

numeric or numeric vector: R-squared

Examples


data(vi_smol)

df <- data.frame(
  y = vi_smol[["vi_numeric"]],
  x = vi_smol[["swi_max"]]
)

#no cross-validation
f_numeric_gam(df = df)
#> [1] 0.6324608

#cross-validation
f_numeric_gam(
  df = df,
  cv_training_fraction = 0.5,
  cv_iterations = 10
  )
#>  [1] 0.6040635 0.6127678 0.6172547 0.5820694 0.5955225 0.6285816 0.6309853
#>  [8] 0.6238063 0.5930153 0.6314616

#categorical predictor
df <- data.frame(
  y = vi_smol[["vi_numeric"]],
  x = vi_smol[["koppen_zone"]]
)

f_numeric_gam(df = df)
#> [1] 0.8194987