Fits a Gaussian GAM model y ~ s(x) (y ~ x if x is non-numeric) with the numeric response y and the numeric, character or factor predictor x using mgcv::gam() and returns the R-squared of the observations against the predictions (see score_r2()).
Supports cross-validation via the arguments arguments cv_training_fraction (numeric between 0 and 1) and cv_iterations (integer between 1 and n) introduced via ellipsis (...). See preference_order() for further details.
See also
Other preference_order_functions:
f_binomial_gam(),
f_binomial_glm(),
f_binomial_rf(),
f_categorical_rf(),
f_count_gam(),
f_count_glm(),
f_count_rf(),
f_numeric_glm(),
f_numeric_rf(),
preference_order()
Examples
data(vi_smol)
df <- data.frame(
y = vi_smol[["vi_numeric"]],
x = vi_smol[["swi_max"]]
)
#no cross-validation
f_numeric_gam(df = df)
#> [1] 0.6324608
#cross-validation
f_numeric_gam(
df = df,
cv_training_fraction = 0.5,
cv_iterations = 10
)
#> [1] 0.6040635 0.6127678 0.6172547 0.5820694 0.5955225 0.6285816 0.6309853
#> [8] 0.6238063 0.5930153 0.6314616
#categorical predictor
df <- data.frame(
y = vi_smol[["vi_numeric"]],
x = vi_smol[["koppen_zone"]]
)
f_numeric_gam(df = df)
#> [1] 0.8194987
